Efficient Management of Water and Nutrient Resources: **Assessing the Potential for Drip Irrigation Fertigation** Fred Below, Tryston Beyrer and Ross Bender **Crop Physiology Laboratory Department of Crop Sciences, University of Illinois at Urbana-Champaign**

Fluid Fertilizer Forum, February 16, 2016 Scottsdale, AZ

Test Your Knowledge of High Yield Corn and Soybean

 What factor has the biggest impact on Corn and Soybean yield each year?

Weather

Above Average Precipitation during June, 2015

Accumulated Precipitation (in) June 1, 2015 to June 30, 2015

Source: NOAA Midwestern Regional Climate Center

2015 Illinois Weather Challenges

Adding 60 lbs of N at Various Growth Stages

Growth Stage at Application Time	Grain Yield		
	bushels acre ⁻¹		
No Applied N	140		
V2	203		
V5	207		
V12	208		
R2	175		
R5	149		

LSD 0.05 = 14 Average of two varieties and two years

Test Your Knowledge of High Yield Corn

What is the record corn yield and what is the corn yield gap?

The Corn Yield Gap

- US average corn yield of about 170 bushels per acre
- All 18 National Corn Growers Contest winners in 2015 exceeded 300 bushels, 5 exceeded 400 bushels
- New World Record of 532.0271
 bushels per acre

High Yield is a Family Affair 2015 National Corn Growers Contest Winners

Randy Dowdy Irrigated 1st, @ 486.2 Bridget Dowdy, Irrigated 2nd @ 477.1 Dustin Dowdy, Irrigated 3rd @ 444.6 Kevin Dowdy, No Till/Strip Till Irrigated 3rd @ 481.1 Michelle Dowdy, A Non- Irrigated 1st @ 348.9

David Hula, No Till/Strip Till Irrigated 1st @ 532.0 Craig Hula, No Till/Strip Till Irrigated 2nd @ 485.4

Jill Justice, A No Till/Strip Till Non-Irrig. 1st @ 368.8 Jay Justice, A No Till/Strip Till Non-Irrig. 2nd @ 360.3

Strategy for Winning the Corn Yield Contest

- Feed (better plant nutrition) and protect a much higher density of plants of the best 'racehorse' hybrids
- •Make sure the crop is never stressed

How Have Corn Yields Increased?

Physiology

Source USDA

Fertility Needs for Corn Based on Soil Test Data

- Soil test values calibrated to yield in the 60's and 70's
- Do higher plant populations and more productive germplasm necessitate better fertilization strategies for corn?

High Plant Density = Smaller Roots

Normal Population High Population 32,000 plants/acre 45,000 plants/acre

Champaign, IL 2012

Corn & Soybean Fertility Recommendations

- <u>Current</u> = N (for corn) based on expected yield and P and K based on soil tests
- Future = Use application and fertilizer technologies to supply required crop nutrition

zsioloav

K Uptake & Partitioning for 230 Bushel Corn

K Uptake & Partitioning for 230 Bushel Corn

P Uptake & Partitioning for 230 Bushel Corn

Agron. J. 105:161-170 (2013)

Physiology

K Uptake & Partitioning for 60 Bushel Soybean

P Uptake & Partitioning for 60 Bushel Soybean

and three site-years during 2012 and 2013.

Research Objectives

Can we use subsurface drip irrigation to maintain season-long nutrient availability and alleviate plant stress?

Hypothesis for Better Nutrient Use with Subsurface Drip Irrigation

 Even when water from irrigation is not needed, we can increase corn yields by 30 bushels and soybean yields by **5** bushels by better timing nutrient availability with plant needs

University of Illinois SDI System

- Five acres of corn and five acres of soybean with 48 equally sized zones
- Zones regulated for differential application of irrigation and fertigation
- Completed May, 2014

		Boro
		der e Alley
	13	
	14	Grass Alley Supply Line
	15	
	16	
	17	
	18	
•••••	19	
	20	
	21	E
	22	Block
	23	2: Soy
	24	/bean

Innovative Subsurface Drip System

- Dripperline spaced every 30" buried ~14-16" below ground
- 24 different zones for each crop allows for precise application of nutrients according to plant needs

University of Illinois Capabilities

- Electronic pressure reducer, flow meters
- NMC-Pro: Controls 64 relays (zones/injectors/ reducers)
- Three injectors ranging in capacity from 0.10 to 10 gal/hr
- Electronic solenoid and reducers for each zone

Nutrient Fertigation in Corn - 2014

- Evaluated four hybrids ranging in population from 24,000 to 48,000 plants/acre
- Nutrients N, K, and S were fertigated (No P during 2014) based on known patterns of nutrient accumulation
- Control Treatment: 180 lbs N/acre at V4
- Fertigated Treatment: Applied (80 0 70 14S) between V6 and R2

vsioloav

Visual Fertigation Response

Crop Physiology

All treatments balanced for water. Champaign, 2014.

Fertigation Improved Yield Over Base Fertility

Population	Irrigated	Irrigated Fertigated	
plants acre ⁻¹		bushels acre ⁻¹ —	
24,000	174	191	+17*
30,000	182	197	+15*
36,000	181	198	+17*
42,000	175	197	+22*
48,000	176	194	+18*
Average	175	195	+17*

- * Significantly greater than zero at α =0.10.
- All treatments balanced for water and received base N rate (180 lbs)
- Fertigated treatments received (80-0-70-14S), Champaign, 2014.

Nutrient Fertigation in Soybean - 2014

- 15 soybean varieties ranging in maturity group from 2.7 to 4.2
- Nutrients N, K, S were fertigated (No P in 2014) based on known patterns of nutrient accumulation
- Fertigated Treatment: Applied (50 0 76 16S) between V4 and R7

Varietal Difference in Response to Fertigated Nutrients

Variety	Control	Fertigated	Δ	Variety	Control	Fertigated	Δ
				bu A	C ⁻¹		
1	62.5	61.7	-0.8	10	64.4	67.8	3.4*
2	61.8	61.1	-0.7	11	58.9	62.9	4.0*
3	66.1	66.3	0.2	12	60.2	64.6	4.4*
4	66.6	67.1	0.6	13	61.2	66.3	5.2*
5	59.6	60.2	0.6	14	57.0	62.5	5.5*
6	61.4	62.1	0.7	15	62.1	68.2	6.1*
7	60.7	62.1	1.4				
8	59.3	61.3	2.0				
9	63.1	65.6	2.6				
		Average	0.7			Average	4.8*

* Significantly different at $P \le 0.05$. Trial conducted at Champaign during 2014

Nutrient Fertigation in Corn - 2015

- Five hybrids ranging in population from 32,000 to 50,000 plants/acre
- Nutrients N, P, K, S and Zn were fertigated based on known patterns of nutrient accumulation
- Control Treatment: 180 lbs N/acre at planting
- Fertigated Treatment: Applied (113 120 150 12S and 1Zn) between V6 and R5

Nutrient Application Schedule for Fertigation

Growth	Арр	plication Amount/Cumulative Total*			
Stage	Ν	P_2O_5	K ₂ O	S	Zn
		lbs	acre ⁻¹ ———		oz acre-1
V5&6	7/07	8/08	17/17	2/2	2/2
V7&8	4/11	2/10	8/25	1/3	0/2
V11&12	12/23	0/10	75/100	5/8	6/8
V13&14	6/29	30/40	0/100	0/8	0/8
VT&R1	24/53	20/60	25/125	2/10	2/10
R2&R3	20/73	20/80	15/140	1/11	2/12
R4&R5	40/113	40/120	10/150	1/12	4/16

*In addition to 180 lbs N at planting: Champaign in 2015

Visual Fertigation Response

Control 180 lbs N

All treatments balanced for water. Champaign, 2015.

Fertigated 180 lbs N + (113 - 120 - 150 - 125 - 12n)

Fertigation Improved Yield Over Base Fertility

Population	Irrigated	Fertigated	Δ
Plants Ac ⁻¹		Yield (Bu Ac ⁻¹) —	
32,000	190	243	+53*
38,000	191	247	+56*
44,000	197	248	+51*
50,000	196	245	+49*
Average	194	246	+52*

- * Fertigated significantly greater irrigated at α =0.10.
- All treatments balanced for water and received base N rate (180 lbs).
- Fertigated treatments received (113-120-150-12S-1Zn), Champaign, IL 2015.
- Averaged over five hybrids.

Hybrid Response to Fertigation						
Hybrid	Irrigated	Fertigated	Δ			
		– Yield (Bu Ac ⁻¹)				
214-45STXRIB	204	238	+34*			
7087VT2P	179	248	+69*			
DKC61-54	181	225	+44*			
DKC64-87	201	257	+56*			
N74R-3000GT	204	260	+56*			
Average	194	246	+52*			

- * Fertigated significantly greater irrigated at α =0.10.
- All treatments balanced for water and received base N rate (180 lbs).
- Fertigated treatments received (113-120-150-12S-1Zn), Champaign, IL 2015.
- Averaged over four plant populations.

Nutrient Uptake and Fertilizer Recovery

Nutrient
elementIrrigatedFertigatedΔRecovery

	%			
Ν	137	210	+73*	65
P_2O_5	59	89	+30*	25
K ₂ O	130	177	+47*	31
S	12.8	17.4	+4.6*	38

- * Fertigated significantly greater irrigated at α =0.10.
- All treatments balanced for water and received base N rate (180 lbs).
- Fertigated treatments received (113-120-150-12S-1Zn), Champaign, IL 2015.
- Average of five hybrids and four plant populations.

Soybean Growth Response to Fertigation

Not Fertigated

Fertigated

Treatments to Characterize Soybean Varieties

- •17 commercial soybean varieties, MG 2.5 to 3.9
- Fertigation schedule to provide 75 lbs N, 55 lbs P_2O_5 , 150 lbs K_2O , 25 lbs S, and 18 oz Zn
- Foliar protection (Prixor fungicide and Fastac insecticide) at R3
- Fertigation and Foliar Protection

Nutrient Application Schedule for Fertigation

Growth _	vth Application Amount/Cumulative				
Stage	Ν	P_2O_5	K ₂ O	S	Zn
		Ibs acre ⁻¹			
V3	25/25	5/5	35/35	3/3	3/3
V7	0/25	10/15	35/70	4/7	3/6
R2	0/25	10/25	35/105	4/11	3/9
R4	0/25	10/35	35/140	5/15	3/12
R5	25/50	10/45	10/150	5/20	3/15
R6	25/75	10/55	0/150	5/25	3/18

Champaign in 2015

Soybean Yield Increase from Foliar Protection and/or Fertigation

Treatment	Average	Range	
	bushels acre ⁻¹		
Standard	70.5	57 - 80	
Foliar Protection	74.7	59 - 83	
Fertigation	78.6	68 - 85	
Fert. and Foliar	80.6	70 - 89	

For 17 commercial soybean varieties with RMs 2.5 to 3.9

Variety, Foliar Protection and Fertigation

Variety	Standard	Foliar	Fert.	Fert + Foliar
		bushels	acre ⁻¹	
S25-L9	59.3	59.1	70.1	72.7
S28-D3	57.8	67.8	74.8	78.4
S30-V6	67.0	70.9	68.7	69.5
S35-A5	75.6	82.4	83.1	89.0
S37-Z8	72.6	78.9	76.4	80.1

Conclusions

- Yield increases on the order of 50 bushels for corn and 8 bushels for soybean from fertigation, even though extra water from irrigation was not needed
- Hybrid and variety differences in response to fertigation suggest opportunities for additional yield improvement for better nutrient use

Acknowledgements Personnel

- Brad Bandy
- Tryston Beyrer
- Ross Bender
- Brad Bernhard
- Narjara Cantelmo
- Claire Geiger
- Andrew Harmon
- Cole Hendrix
- Brandon Litherland
- Adriano Mastrodomenico

- Katie Parker
- Ellie Raup
- Shelby Mann
- Alvero Santos
- Juliann Seebauer
- Jiying Sun
- Alison Vogel

Acknowledgements Financial Support

- BASF
- Fluid Fertilizer Foundation
- John Deere
- Mosaic
- Monsanto
- Netafim
- Syngenta
- WinField Solutions

Very Special Thanks Fluid Fertilizer Foundation FFF Research Committee

For more information:

Crop Physiology Laboratory at the University of Illinois

http://cropphysiology.cropsci.illinois.edu

